Multiview Multi-Instance Multilabel Active Learning
نویسندگان
چکیده
منابع مشابه
Multi-instance multi-label active learning
Multi-instance multi-label learning (MIML) has achieved success in various applications, especially those involving complicated learning objects. Along with the enhancing of expressive power, the cost of annotating a MIML example also increases significantly. In this paper, we propose a novel active learning approach to reduce the labeling cost of MIML. The approach actively query the most valu...
متن کاملLearning Instance Weights in Multi-Instance Learning
Multi-instance (MI) learning is a variant of supervised machine learning, where each learning example contains a bag of instances instead of just a single feature vector. MI learning has applications in areas such as drug activity prediction, fruit disease management and image classification. This thesis investigates the case where each instance has a weight value determining the level of influ...
متن کاملMLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation
Learning from imbalanced data is a problem which arises in many real-world scenarios, so does the need to build classifiers able to predict more than one class label simultaneously (multilabel classification). Dealing with imbalance by means of resampling methods is an approach that has been deeply studied lately, primarily in the context of traditional (non-multilabel) classification. In this ...
متن کاملMulti-Instance Multilabel Learning with Weak-Label for Predicting Protein Function in Electricigens
Nature often brings several domains together to form multidomain and multifunctional proteins with a vast number of possibilities. In our previous study, we disclosed that the protein function prediction problem is naturally and inherently Multi-Instance Multilabel (MIML) learning tasks. Automated protein function prediction is typically implemented under the assumption that the functions of la...
متن کاملMultiple-Instance Active Learning
We present a framework for active learning in the multiple-instance (MI) setting. In an MI learning problem, instances are naturally organized into bags and it is the bags, instead of individual instances, that are labeled for training. MI learners assume that every instance in a bag labeled negative is actually negative, whereas at least one instance in a bag labeled positive is actually posit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2021
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2021.3056436